Abstract

ABSTRACTThe study focuses on the influence of the hydrogenated amorphous silicon carbide (a-SiC:H) buffer layer in hydrogenated amorphous silicon (a-Si:H) single-junction and tandem thin-film solar cells. By increasing the undoped a-SiC:H buffer layer thickness from 6nm to 12nm, the JSC in single-junction cell was significantly improved, and the efficiency was increased by 4.5%. The buffer layer also effectively improves the efficiency of the a-Si:H/a-Si:H tandem cells by 7% as a result of the increase in open-circuit voltage (VOC) and short-circuit current (JSC). Although the bottom cell absorbs less short-wavelength photons, the wider-bandgap doped and buffer layers were still necessary for improving the cell efficiency. Presumably, this is because these wider-bandgap layers allow more photons to reach the bottom cell. Also, they can reduce interface recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.