Abstract

Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1−x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.