Abstract
The mixing of oil and gas forms the foundation of deep-sea oil and gas extraction and transportation. However, traditional conveying equipment has low efficiency and high failure rates. In this study, a spiral axial flow gas and liquid multiphase pump was used as the base model. The Eulerian multiphase flow model and RNG turbulence model were used for numerical simulations to analyze the internal flow field of the multiphase pump. A modification scheme was proposed to twist the airfoil shape and create a twisted vane. The twisted blade with the center of the hub-side flange chord length as the twisting center was twisted in the counterclockwise direction to help reduce the relative volume of gas in the flow channel. When the twisted vane with the hub-side airfoil type trailing edge point as the twisting center was twisted in the suction side direction, it helped to accelerate the movement of the gas-liquid mixture at the trailing edge of the back of the vane and further reduced the low velocity zone at the back of the vane. When the twist center is located at the hub side wing type trailing edge point of the twist vane, the twist degree is 0.214. This results in the maximum head and efficiency of the pump, improves gas phase aggregation phenomenon, and enhances the performance of the multiphase pump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.