Abstract

In phytomanagement approach the application of a combination of amendments is an option for remediating arsenic polluted areas and valorized biomass obtained. Various amendments can be used. Biochar has been shown to reduce metal(loid) availability, and increase soil fertility, while iron sulfate has a considerable As binding capacity, and poultry manure is a source of nutrients. A phytotoxicity test was performed by applying the three amendments (2% biochar, 0.15%, 0.30% and 0.45% iron sulfate and 0.4% poultry manure) to a former tin mine technosol, to investigate their effects on (i) soil pore water properties, (ii) metal(loid) immobilization and (iii) Phaseolus vulgaris L. growth, used as a bioindicator. Biochar addition alone did not affect soil properties or plant parameters. However, the addition of iron sulfate acidified the soil, decreased soil pore water As concentrations, and increased the ones of Fe and Pb. It also improved plant growth, and reduced As and Pb aerial and root concentrations. Finally, the addition of poultry manure had no effect on soil and plants. Based on our results, the combination of iron sulfate with biochar may be a solution for reducing soil toxicity of the Abbaretz mining technosol, improving its fertility, and thus ameliorating plant growth. Novelty statement: The work presented in this manuscript describes the effect of amendment application, i.e., biochar, chicken dung and/or iron sulfate, on soil properties, metals availability and dwarf bean growth, plant used as bioindicator. Our results showed that the combination of a low amount of iron sulfate with biochar is the strategy to reduce soil toxicity, improved its fertility and consequently authorizes plant growth. This study is one of the first describing the effects of combined amendments on a mining soil properties with focusing on metal(loid) mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.