Abstract

As is well known, direct-current (DC) characteristic, frequency characteristic and noise characteristic of SiGe heterojunction bipolar transistor(HBT) can be improved by "bandgap engineering"(by Ge composition). However, the effect of "bandgap engineering" on the thermal characteristic of HBT has not been reported. In this paper, the effect of "bandgap engineering" is analyzed by the use of 3D thermal-electric feedback model. Considering the temperature dependence of emitter junction voltage and current gain, the expression of the minimum emitter ballasting resistance (REmin), which is necessary for SiGe HBT thermal stability, is presented. Furthermore, non-uniform ballasting resistance design is given so as to further enhance the thermal stability of device. It is found that the surface temperature of the device decreases with the increase of Ge composition in SiGe base. This is because SiGe HBT internally possesses the thermal-electrical negative feedback. For the same dissipated power, the REmin decreases as Ge composition increases, which is beneficial to the improvment of the performance of radio frequancy(RF) power SiGe HBT. These results provide a good guide to further optimization of RF power SiGe HBT performance, especially thermal design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.