Abstract

Understanding the microstructure of W–Cu nanocomposite powder is essential for elucidating its sintering mechanism. In this study, the effect of milling time on the structural characteristics and densification behavior of W-Cu composite powders synthesized from WO3-CuO powder mixtures was investigated. The mixture of WO3 and CuO powders was ball-milled in a bead mill for 1h and 10h followed by reduction by heat-treating the mixture at 800°C in H2 atmosphere with a heating rate of 2°C/min to produce W-Cu composite powder. The microstructure analysis of the reduced powder obtained by milling for 1h revealed the formation of W–Cu powder consisting of W nanoparticle-attached Cu microparticles. However, Cu-coated W nanocomposite powder consisting of W nanoparticles coated with a Cu layer was formed when the mixture was milled for 10h. Cu-coated W nanopowder exhibited an excellent sinterability not only in the solid-phase sintering stage (SPS) but also in the liquid-phase sintering stage (LPS). A high relative sintered density of 96.0% was obtained at 1050°C with a full densification occurring on sintering the sample at 1100°C. The 1h-milled W-Cu powder exhibited a high sinterability only in the LPS stage to achieve a nearly full densification at 1200°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.