Abstract

BackgroundSeveral researches have examined the impact of inhalation anesthetics, intravenous anesthetics, and muscle relaxants on spectral entropy, but many did not evaluate the extent of neuromuscular block. Besides, they did not inspect the impact of distinct degrees of neuromuscular blockade on spectral entropy under dissimilar saturations of isoflurane inhalation. Hence, this study has evaluated variant degrees of minimum alveolar concentration (MAC) to estimate the isoflurane concentration, along with various levels of neuromuscular blockade.This study aims to evaluate the effect of muscle relaxants (atracurium and rocuronium) on entropy readings (state, response entropy, and response-state difference) during isoflurane anesthesia.This is a prospective randomized study, as forty patients have been included and divided into two study groups: patients in group A received atracurium, while patients in group R received rocuronium. Under 50% and 100% neuromuscular blockage, state and response entropy were observed at MACs of 0.8% and 1%, respectively.ResultsThere was a positive correlation between state (SE) and response entropy (RE) at baseline, different MACs, and different trains of four (TOF) for both atracurium and rocuronium. State and response entropy decreased with increasing MAC of isoflurane (P < 0.001), while atracurium and rocuronium at TOF 50% and 100% showed no effect on SE, RE, or RE-SE (P > 0.05).ConclusionsState and response entropy can be used effectively to evaluate the depth of anesthesia at different isoflurane MAC and atracurium or rocuronium doses.Registration numberClinicalTrials.gov identifier: NCT 05097508, Registered October 5, 2021 (prospectively registered), http://www.ClinicalTrial.gov

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.