Abstract

This study used rat erythrocyte ghost membrane to investigate the effect of aminophospholipid distribution in biological membranes on oxidative susceptibility. Aminophospholipids, lipid peroxidation, and carbonyl compounds were quantified; plasma membrane structure was examined using atomic force microscopy (AFM) and SDS–polyacrylamide gel electrophoresis (SDS–PAGE). Inside-out vesicles (IOVs) had significantly more aminophospholipids and greater lipid peroxidation than right-side-out vesicles (ROVs). Spectrin bands in IOVs disappeared obviously than in ROVs as shown in SDS–PAGE. In both systems vesicle protein size increased significantly with oxidation. Proteins aggregated much more in IOVs than ROVs at 48 h. These observations suggest that IOVs were more susceptible to ferrous ion-induced peroxidation than ROVs and that asymmetric phospholipid distribution affects biomembranes’ oxidative susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.