Abstract

The effects of apomorphine on the striatal l-[ 11C]DOPA influx rate was examined in anaesthetized Rhesus monkeys using positron emission tomography (PET). In comparison with baseline conditions, the addition of a continuous infusion of apomorphine produced decreases in the striatal l-[ 11C]DOPA influx rate in all the monkeys examined. The effect of apomorphine infusion also showed a dose-dependent trend. In individual monkeys, the magnitude of the effect showed a baseline dopaminergic tone-dependency; that is, the effect of apomorphine was most pronounced in monkeys with high baseline influx rates, and in monkeys with lower baseline values apomorphine induced a weaker effect. Studies of radiolabeled tracer and radiolabeled metabolites formed in plasma confirmed that apomorphine infusion did not induce any change in the peripheral elimination or metabolite formation of l-[ 11C]DOPA. The decreased striatal l-[ 11C]DOPA influx rate induced by apomorphine was interpreted as an agonist effect on dopamine autoreceptors regulating the dopamine synthesis rate. The observation of a baseline dopaminergic tone-dependent effect is in agreement with earlier results showing this influence on the striatal influx rate as measured with the tracer l-[ 11C]DOPA. A priori, it can be established that l-[ 11C]DOPA and PET provide a method not only to study the structural integrity of the presynaptic dopaminergic system but also to study the homeostasis-regulating mechanisms of this neurotransmitter system in vivo. The ability to measure condition-dependent effects in individuals should be of great importance in determining specific pathophysiological mechanisms underlying degenerative and functional disorders affecting the dopaminergic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.