Abstract

Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.