Abstract
Hybrid materials exhibit excellent properties than their components. Herein, boron nitride and boron nitride/nickel oxide (BN80/NiO20) nanocomposite films were deposited by the drop-casting method. X-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy techniques have been utilized for determining structural, defect chemistry and morphological properties of deposited films. The structural analysis confirmed the formation of BN and NiO phases. Nelson–Riley Factor analysis and Raman analysis revealed the presence of defect states in BN80/NiO20 film. Electrical properties of films were studied in the presence of various concentrations of ammonia gas molecules at different temperatures. BN80/NiO20 composite film showed higher resistivity in the presence of ammonia gas than pure BN film. Variation of electrical resistivity with ammonia gas concentration has been explained through a proposed model. Also, to obtain the resistivity variation concerning ammonia gas concentrations at different temperatures, the linear regression method was used. This work insight the electrical behavior of composite material at different gas concentrations which opens these materials for exploration towards gas sensing and different functional applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.