Abstract

The threat of small-to-medium caliber armor piercing projectiles requires efficient protections that can be achieved by using bilayered configurations. They consist of a front face made up of a hard material and a back face made up of a ductile material. These solutions are among the most interesting in terms of mass efficiency. To design such bilayered concepts, one needs to understand and model fragmentation of the ceramic during the first microseconds after impact. This cracking pattern may significantly reduce the multi-hit capability of the armor. A new material made of porous silicon carbide infiltrated with aluminum is considered. The presence of an aluminum skeleton may improve the residual strength after impact. The present study deals with a comparison of fragmentation properties of this new material with those of porous silicon carbide. Quasi-static experiments and edge-on-impact tests are performed. The role of aluminum is discussed. An anisotropic damage model coupled with a fragmentation study is used to analyze the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.