Abstract

The micromechanical model for predicting macroscopic effective elastic coefficients of aluminum honeycomb cores is established based on homogenization theory combined with FEM method. The effects of aluminum honeycomb cell geometrical parameters on the efficiency of materials are investigated based on the concept of material efficiency. By using MATLAB language, the material efficiencies of irregular orthotropic hexagonal aluminum honeycomb cores with various height-to-length ratio, thickness-to-length ratio and cell wall angle are simulated. The effects of cell geometrical parameters on the efficiency of material are obtained. The light-weight design for aluminum honeycomb core is analyzed in further. The results have guiding signification for the optimization design and engineering application of aluminum honeycomb core materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.