Abstract

Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms.AOX expression did not compromise the function of the mammalian respiratory chain at physiological conditions, however the complex IV inhibitor cyanide only partially blocked respiration by AOX-containing mitochondria. The relative fraction of cyanide-insensitive respiration increased at lower temperatures, indicative of a temperature-controlled attenuation of mammalian respiratory enzyme activity.As AOX does not translocate protons, the mitochondrial transmembrane potential in AOX-containing mitochondria was more sensitive to cyanide during succinate oxidation than during malate/pyruvate-supported respiration. High concentrations of cyanide fully collapsed membrane potential during oxidation of either succinate or glycerol 3-phosphate, but not during malate/pyruvate-supported respiration. This confirms AOX's electroneutral redox activity and indicates differences in the proton-translocating capacity of dehydrogenases upstream of the ubiquinone pool. Our respiration data refutes previous proposals for quinone partitioning within the supercomplexes of the respiratory chain, instead supporting the concept of a single homogeneous, freely diffusing quinone pool.Respiration with either succinate or glycerol 3-phosphate promotes reverse electron transfer (RET) towards complex I. AOX expression significantly decreased RET-induced ROS generation, with the effect more pronounced at low temperatures. Inhibitor-sensitivity analysis showed that the AOX-induced decrease in H2O2 release is due to the lower contribution of complex I to net ROS production during RET.Overall, our findings provide new insights into the role of temperature as a mechanism to control respiration and highlight the utility of AOX as a genetic tool to characterize both the distinct pathways of oxygen reduction and the role of redox control in RET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.