Abstract

This paper discusses the impact of nanoparticle concentrations on heat transfer characteristics in a Loop Heat Pipe (LHP). In this study, alumina nanoparticles (Al2O3) in water with particle mass concentration ranged from 0% to 3% is considered as the operational fluid within the LHP. The experiments are carried out by manufacturing the LHP, in which the setup consists of a water tank with pump, a flat evaporator, condenser installed with two pieces of fans, two transportation lines (vapor and liquid lines), copper pipe sections for attachment of the thermocouples and power supply. The uniqueness of the current experimental setup is the vapor line of LHP which is made of transparent plastic tube to visualize the fluid flow patterns. The experimental results are verified by Finite Element (FE) simulation using a three-dimensional (3D) model based on the heat transfer by conduction where the LHP as a whole is modeled by assuming it as a conducting medium without taking into account the events occurring inside the LHP. The LHP performance is evaluated in terms of transient temperature distribution and total thermal resistance (Rt). The experimental and simulation results are found in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.