Abstract

The crystallization behavior and melt structure of the CaO–SiO2–B2O3-based fluorine-free mold flux were investigated. The results show that the crystallization of the mold flux was first inhibited and then promoted with the increase in Al2O3 content from 4 to 12 wt.%. However, it was enhanced by MgO in the range of 2–10 wt.%. The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al2O3 worked as a network former in the mold flux melt when its content was in the range of 4–8 wt.%, whereas it worked as the network breaker to provide O2− when its content was in the range of 8–12 wt.%. In addition, the combined effects from the charge compensation by Mg2+ and the network broken by O2− led to the increase in some typical T–O–T (Al–O–Al, B–O–B, etc.) and simpler structural units (Q0(Si), B–O− in the [BO2O−], etc.) when the MgO content was in the range of 2–6 wt.%. The continuous increase in O2− provided by the addition of MgO from 6 to 10 wt.% further depolymerized the network of the melt and finally caused fast crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.