Abstract

The wettability and stability of a solution’s film on the filler surface are the key factors determining heat and mass transfer efficiency in liquid desiccant air conditioning systems. Therefore, this study investigates the effects of different air parameters on the flow behavior of a lithium chloride solution’s film. The effects of air velocity, air flow pattern, and pressure on the wettability and critical amount of spray are discussed. The results show that the main mechanism by which the air velocity affects the wettability is that the shear stress generated by the direction of the air velocity disperses the direction of the surface tension and weakens its effect on the liquid film distribution. In addition, in the counter flow pattern, the air flow blocks the liquid film from spreading longitudinally and destroys the stability of the liquid film at the liquid outlet, which increases the critical amount of spray. The pressure distribution is similar under different operating pressures when the flow is stable; thus, pressure has little effect on wettability. The simulation results under 8 atm are compared with the experimental results. It is found that the sudden increase in the amount of moisture removal when the amount of spray changes from 0.05 to 0.1 m3/(m·h) in the experiment is caused by the change in the liquid film flow state. In addition, the results show that within the range of air flow parameters for the liquid desiccant air conditioning system, air flow shear force is not the main factor affecting the stability of the solution’s film, and there is no secondary breakage of the solution’s film during the falling-film flow process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.