Abstract

An investigation of the fatigue properties of an Al-Cu-Mg-Ag alloy with two different heat treatments—peak aged (T6), and peak aged interrupted (T6I4)—has been conducted. While the strength levels resulting from the two heat treatments were similar, the main difference between the microstructures was that the peak aged interrupted material contained a higher volume fraction of the θ′ precipitates. This study specifically focused on the effects of these treatments on the fatigue lifetime distribution, and the role of crack initiation vs the small crack growth behavior. Several total fatigue lifetime tests were completed at room temperature and at a given stress level to characterize the distribution in fatigue lifetimes. Fatigue results indicate that there is almost no difference in the mean lifetime for either heat treatment, but there is a significant difference in the minimum lifetimes, where the peak aged condition exhibited a higher propensity for life-limiting failure mechanisms. The small crack growth behavior of the two aging treatments was studied both at room temperature and elevated temperature by means of a standard acetate replication method. The small crack growth rates at both temperatures were largely unaffected by the different aging treatments. Based on the given number of tests, results suggest that the life-limiting fatigue failures of the two aging treatments are primarily governed by different crack initiation mechanisms due to the differences seen in the density of θ′ precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.