Abstract

We analyzed the role of aggregation and interfacial thermal resistance on the effective thermal conductivity of nanofluids and nanocomposites. We found that the thermal conductivity of nanofluids and nanocomposites can be significantly enhanced by the aggregation of nanoparticles into clusters. The value of the thermal conductivity enhancement is determined by the cluster morphology, filler conductivity and interfacial thermal resistance. We also compared thermal conductivity enhancement due to aggregation with that associated with high-aspect ratio fillers, including fibers and plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.