Abstract

This paper evaluates the mechanism of nutrient removal in an oxidation ditch system using basic process stoichiometry and model simulation. Aeration intensity and the resulting dissolved oxygen concentration are identified as the main parameters defining the denitrification potential, and affecting the extent of nitrification/ denitrification processes, mainly because no clear anoxic/aerobic zones can be established in the system. For wastewater characteristics and a wastewater scheme tested with model simulation using ASM2d, process efficiency is highly influenced by the dissolved oxygen concentration in a narrow range of 0.4–0.8 mg/L. Enhanced biological phosphorus removal is also affected through the level of nitrate recycle into the anaerobic reactor. Diurnal variations in the influent at a constant aeration regime result in insufficient aeration during peak loads followed by overaerated periods, and in this way, cause temporal instability in nutrient removal performance. With the aid of dynamic simulations, the dissolved oxygen set-point control provides better effluent quality and process stability in terms of nutrient removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.