Abstract
The effect of addition temperature of MgO particles (MgOp) on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated. In addition, the grain refinement mechanism was systematically studied by microstructure characterization, thermodynamic calculation, and analysis of solidification curves. The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810 °C, exhibiting a minimum value of 136 μm at 780 °C. The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt. Furthermore, a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.