Abstract
LCL-filter is commonly used to attenuate the switching harmonics of grid-connected converters. LCL -filter creates resonances in the converter dynamics which shall be damped for ensuring robust performance of the converter. Active damping methods can be used to attenuate the resonant behavior effectively. Accordingly, the output impedance is affected and the grid-interaction sensitivity of the converter varies with the active damping design. In order to carry out impedance-based stability analysis or assessment of the harmonic rejection capability, an accurate analytical model to predict the output impedance is necessary. This paper investigates the output impedance properties of capacitor-current-feedback active damping, which are so far not considered thoroughly in the literature. The output impedance modification with the active damping design is explained, thus, the stability and harmonic rejection capability of the converter can be improved. Furthermore, in order to validate the model, experimental measurements of the output impedance with active damping are presented for the first time in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.