Abstract
As‐grown GaN buffer layers have a significant electron concentration, which causes an increase in leakage current and a decrease in the breakdown voltage, VBR, of GaN High Electron Mobility Transistors (HEMTs). To prevent this, deep acceptor traps of density, NAT, are added to the GaN layer during growth. While a study on the effect of NAT on VBR is available in the literature, that on the effect of NAT on contact resistance, Rc, of source/drain contacts is lacking. Herein, the following is established using technology computer‐aided design simulations calibrated with measured current–voltage characteristics of ungated AlGaN/GaN structures: 1) Rc increases significantly with NAT and with the depth of the trap level from the conduction band. For trap level 2.5 eV below the conduction band, Rc doubles for an increase in NAT from 1 × 1016 to 5 × 1017 cm−3. 2) The variation of Rc with temperature is non‐monotonic. Over a temperature range of 300–450 K, Rc is nearly constant with temperature for NAT = 1 × 1016 cm−3 and decreases by 20% for NAT = 5 × 1017 cm−3, when traps are 2.5 eV below the conduction band. Also, the degradation of the transfer and output characteristics of GaN HEMTs due to a notable increase in Rc due to NAT is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.