Abstract

With the increasing installation of weather-dependent renewable sources such as solar and wind power, the ability to produce electricity on demand to balance any shortfall in supply is becoming more important. Anaerobic digestion is a low-carbon energy source with the potential to be flexible to meet this need. An investigation was conducted into the response of two laboratory-scale anaerobic digesters at loading rate of 2.5 gVS L−1 day−1 over five months using a synthetic food waste as a substrate. One digester was consistently fed at the same rate, whereas the other digester was fed with periods of varying organic loading rate, from 0.1 to 7 gVS L−1 day−1, using a feed pattern derived from a record of restaurant food waste. The digester that had been fed at a variable rate showed a pronounced increase in biogas production after feed events and a 9.6% higher VS breakdown than the steady-feed digester (81% compared to 74%), with no effect on digester stability, volatile fatty acid concentration, overall biogas output or biogas quality. These findings support and encourage the use of variable-rate feeding to balance the electricity demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.