Abstract

BackgroundConcern exists about the safety of iron supplementation given to individuals in malarious areas. The possible unfavourable impact of iron supplementation on malaria might be less when slow-release iron compounds are used instead of ferrous salts, because no toxic non-transferrin bound iron is formed. The aim of this study was to determine the effect of iron supplementation using the slow-release iron compound iron polymaltose (IPM) on the acquisition of malarial parasitaemia.MethodsA randomized, placebo-controlled trial was performed in schoolchildren aged 5–18 years with mild or moderate anaemia on the Indonesian island Flores. Microscopic malaria-negative children were randomized to receive 8 weeks of IPM (6 mg elemental iron/kg/day) or placebo . The primary outcomes were the occurrence of microscopically detectable malarial parasitaemia at week 4, 8, 12 and 16 after start of treatment and the proportion of participants with real-time (RT) PCR positive malarial parasitaemia at week 16.Results294 Children were assigned to the IPM group and 297 to the placebo group. Whereas IPM supplementation failed to increased haemoglobin or ferritin concentrations, the IPM group had a significantly higher rate of occurrence of microscopically detectable parasitaemia [hazard ratio 2.2, 95% C.I. 1.2–4.0; P = 0.01]. This higher rate was confined to iron-replete children. At the end of the study, 89% of the children in the IPM group had remained free from microscopically detectable parasitaemia vs 95% of children in the placebo group. The proportion of plasmodial RT-PCR positive children was similar in both groups at week 16 (IPM group 16.6% vs placebo group 14.3%; P = 0.47). When analysis was restricted to iron-replete children (serum ferritin ≥30 µg/l), there was a trend for a higher proportion being RT-PCR positive at week 16 in the IPM group compared with the placebo group (20 vs 13.3%; P = 0.07). Erythrocyte microcytosis was an independent risk factor for microscopically detectable malarial parasitaemia.ConclusionsA short course of IPM should be used cautiously in anaemic children in malaria endemic areas, as it has limited efficacy in treating iron deficiency, while it increases the rate of microscopic malarial parasitaemia in those with replete iron stores.Trial registration ISRCTN 83091970. Registered 16 May 2012 (retrospectively registered)

Highlights

  • Concern exists about the safety of iron supplementation given to individuals in malarious areas

  • Whether this practice is associated with an increased risk for malaria is unknown, especially in malaria-endemic areas outside sub-Saharan Africa where malaria caused by Plasmodium vivax is more common, malaria transmission is generally less intense and clinical malaria is more frequently seen in older children

  • Because of the low prevalence of submicroscopic parasitaemia at baseline, the PCR results for P. falciparum and P. vivax were combined for further analyses

Read more

Summary

Introduction

Concern exists about the safety of iron supplementation given to individuals in malarious areas. There has been an ongoing debate on the risk benefit ratio of iron supplementation in malaria endemic regions [2,3,4,5], especially following publication of the results from the Pemba trial, which showed increased risk for hospitalization and mortality after untargeted iron supplementation with a low daily iron dose (12.5 mg) among iron-replete children [6] It is common practice among physicians in many parts of the world to prescribe a short course of iron in a therapeutic dosage to children with anaemia. Slow-release iron compounds such as iron polymaltose (IPM) or sodium iron ethylenediaminetetraacetate (NaFeEDTA) are frequently used for iron supplementation instead of ferrous salts in Asian countries These compounds may have a less unfavourable effect on malaria, as they do not produce toxic non-transferrin bound iron (NTBI) [7,8,9]. Data on the effectiveness of these compounds in correcting iron deficiency have been conflicting with some studies showing a favourable [10], but others a poor haematologic response [11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.