Abstract

Diffusion-enhancing holes (DEHs) have been used to mitigate the large density gradients that are formed in the thick-section ceramic matrix composites (CMCs) fabricated by chemical vapor infiltration (CVI). However, the densification characters of the thick-section CMCs with DEHs through vapor infiltration remain a concern. Here, the densifications of a10-mm-thick two dimensional (2D) C/SiC composite with or without DEHs are investigated by experiments and calculations. Results showed both the measured densities, the predicted final densities, and the density growth rates (DGRs) for the composite with DEHs (diameters of 2 or 4 mm) are higher than those of the counterpart without DEHs, due to the forming of dense rings (DRs) around DEHs and the increased infiltration in the large pores (diameter > 52 μm). In addition, the diffusion increase in infiltration with DEHs is attributed to the increase of Knudsen diffusion resulted from the reopening of the blocked/sealed pores by DEH-machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.