Abstract

Physiological stress can bring major molecular and cellular change to a living cell which further decide its survival or tolerance to the stress exposure. Cyanobacteria like Anabaena has been shown to tolerate high levels of different stresses like oxidative, desiccation, UV, and gamma radiation. They are able to withstand and recover remarkably without any lethal mutation when exposed to high doses of gamma radiation or prolonged duration of desiccation. In the present work, the modifications in protein profiles of Anabaena 7120 cells after exposure to 6kGy of 60Co γ-rays and 6days of desiccation, and the proteome dynamics during post stress recovery were investigated. Differentially expressed proteins during stress and recovery were identified by MALDI-ToF or LC-MS, which generated a partial proteome map of Anabaena 7120. Anabaena cells went through protein recycling-phase of protein degradation following by their resynthesis, which helped them to recover remarkably. The data suggests an overlap in proteome changes during recovery against radiation and desiccation stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.