Abstract

Despite advances in modern medicine including the use of computed tomography for detecting COVID-19, precise identification and segmentation of lesions remain a significant challenge owing to indistinct boundaries and low degrees of contrast between infected and healthy lung tissues. This study introduces a novel model called the edge-based dual-parallel attention (EDA)-guided feature-filtering network (EF-Net), specifically designed to accurately segment the edges of COVID-19 lesions. The proposed model comprises two modules: an EDA module and a feature-filtering module (FFM). EDA efficiently extracts structural and textural features from low-level features, enabling the precise identification of lesion boundaries. FFM receives semantically rich features from a deep-level encoder and integrates features with abundant texture and contour information obtained from the EDA module. After filtering through a gating mechanism of the FFM, the EDA features are fused with deep-level features, yielding features rich in both semantic and textural information. Experiments demonstrate that our model outperforms existing models including Inf_Net, GFNet, and BSNet considering various metrics, offering better and clearer segmentation results, particularly for segmenting lesion edges. Moreover, superior performance on the three datasets is achieved, with dice coefficients of 98.1, 97.3, and 72.1 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.