Abstract
When brain activity ions, the potential for human capacities augmentation is promising. In this paper, EMD is used to decompose EEG signals during Imagined Speech in order to use it as a biometric marker for creating a Biometric Recognition System. For each EEG channel, the most relevant Intrinsic Mode Functions (IMFs) are decided based on the Minkowski distance, and for each IMF 4 features are computed: Instantaneous and Teager energy distribution and Higuchi and Petrosian Fractal Dimension. To test the proposed method, a dataset with 20 Subjects who imagined 30 repetitions of 5 words in Spanish, is used. Four classifiers are used for this task - random forest, SVM, naive Bayes, and k-NN - and their performances are compared. The accuracy obtained (up to 0.92 using Linear SVM) after 10-folds cross-validation suggest that the proposed method based on EMD can be valuable for creating EEG-based biometrics of imagined speech for Subject identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.