Abstract

This correspondence presents a technique for the electroencephalogram (EEG) spike enhancement and detection, which uses the Kalman filtering (KF) approach based on the output correlation method for the nonstationary signal enhancement. We describe the nonstationary EEG signal in terms of the general Markov model, in which the parameters are considered to be time-varying. In the proposed methodology, neither the process and measurement noise statistics nor the initial Kalman blending factor are stringently required. The EEG epileptic spikes (ESs) are pre-emphasized using the output correlation method, and subsequently, the detection is performed using the decision threshold based on the output of same adaptive filter. We have tested the proposed scheme on the synthetic EEG signal corrupted with randomly occurring triangular spikes. The presented simulation results manifest significant improvement in the signal-to-noise ratio (SNR) due to the modified estimation of time-varying parameters of the general Markov model, which in turn leads to the alleviated number of false-positives (FPs). It is apparent that the real-time EEG signal (rat data) can be analyzed using the proposed EEG epileptic spike enhancement and detection adaptive scheme, which outperforms the conventional KF technique under the different SNR conditions. At 10 dB SNR, the output correlation method provides approximately 40 % reduction in FPs for the triangular spikes in synthetic EEG signal and approximately 27.5 % reduction in FPs for ESs in the rat data as compared to the conventional KF scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.