Abstract

Nearly 200 anabolic reactions liberate pyrophosphate (PPi), a byproduct of NTP hydrolysis (Kornberg, 1962; Maeshima, 2000; Heinonen, 2001; Ferjani et al., 2014a,b). In living cells, PPi must be hydrolyzed to orthophosphate by pyrophosphatase (PPase), because it suppresses the above reactions. PPases fall into two major classes, soluble PPases (sPPases) and membrane-bound H+-PPases (H+-PPases). In plants, vacuolar H+-PPase uses the energy released by PPi hydrolysis to acidify the vacuole, and its activity is particularly high in young tissues (Martinoia et al., 2007). Nevertheless, the physiological roles of PPases remain unclear due to severe phenotypes in loss-of-function mutants in various organisms (Ferjani et al., 2011 and references therein). Due to the importance of PPi homeostasis for life, this paper presents the most recent findings in this field and discusses the present situation along with future directions.

Highlights

  • 200 anabolic reactions liberate pyrophosphate (PPi), a byproduct of NTP hydrolysis (Kornberg, 1962; Maeshima, 2000; Heinonen, 2001; Ferjani et al, 2014a,b)

  • Vacuolar H+-PPase uses the energy released by PPi hydrolysis to acidify the vacuole, and its activity is high in young tissues (Martinoia et al, 2007)

  • Due to the importance of PPi homeostasis for life, this paper presents the most recent findings in this field and discusses the present situation along with future directions

Read more

Summary

Introduction

200 anabolic reactions liberate pyrophosphate (PPi), a byproduct of NTP hydrolysis (Kornberg, 1962; Maeshima, 2000; Heinonen, 2001; Ferjani et al, 2014a,b). PPi must be hydrolyzed to orthophosphate by pyrophosphatase (PPase), because it suppresses the above reactions. Vacuolar H+-PPase uses the energy released by PPi hydrolysis to acidify the vacuole, and its activity is high in young tissues (Martinoia et al, 2007).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.