Abstract

An edge-weighted consensus-based formation control strategy is presented for mobile robots. In the edge-weighted strategy, a desired formation pattern is achieved by adjusting gain weights related to the distance between robots. Moreover, the edge-weighted formation control exploits the properties of weighted graphs to allow the formation to rotate and adapt its shape to avoid collision among robots. However, formation patterns are commonly defined by biases with respect to the centroid of the consensus rather than gain weights. This work proposes to optimize the gain weights in edge-weighted graphs, given a formation pattern in terms of biases. A multi-strategy mutation differential evolution algorithm is introduced to solve the optimization problem. Simulation and real-world experiments are performed considering multi-robot systems composed of differential drive robots. Additionally, the experimental setup includes Turtlebot3® Waffle Pi robots and an OptiTrack® motion capture system for control purposes. The experimental results verify the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.