Abstract

The divertor performance of LHD is studied for the two configurations, LID and HD. It is shown that the both divertor configurations play important roles for obtaining high performance plasmas in LHD: the large pumping capability of the LID to keep the low edge density in the IDB-SDC plasma, the large wetted area and the flexibility of strike point sweep of HD to reduce the power load on the divertor plates in long pulse operations. The possible effect of the ergodic layer on impurity retention in divertor is discussed by using the 3D edge transport modelling. It is found that the drag force exerted by the plasma flow can dominate over the thermal force, providing the impurity retention effect. The further changes needed to improve the current divertor configurations are discussed. New divertor designs for the future upgrade of LHD and for a LHD-type reactor are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.