Abstract

We study corner states on a flat band in the square lattice. To this end, we introduce a two dimensional model including Su-Schrieffer-Heeger type bond alternation responsible for corner states as well as next-nearest neighbor hoppings yielding flat bands. The key symmetry of the model for corner states is space-time inversion ($\cal PT$) symmetry, which guarantees quantized Berry phases. This implies that edge states as well as corner states would show up if boundaries are introduced to the system. We also argue that an infinitesimal $\cal PT$ symmetry-breaking perturbation could drive flat bands into flat Chern bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.