Abstract

AbstractWe study in the framework of the continuum theory of dislocations the structure of the interface between an AB diblock copolymer lamellar film deposited on a solid substrate and an A‐homopolymer melt. The dislocation inside the lamellar phase induces steps at the interface. The shape of the profile at the edge of a step (edge profile) depends on the distance of the dislocation from the interface. The profile and the equilibrium location of the dislocations are both studied as a function of the film thickness, D. For large D, the dislocation is stabilized at a finite distance, heq, from the interface, due to the small surface tension and large surface bending elastic constant, Ks. For zero surface tension, heq ≈ Ks/(2K), where K is the bulk bending elastic constant. For small D, heq is mainly determined by the proximity of the solid substrate. The edge profile along the interface is a monotonic function of the distance along the interface for large D of the film and becomes nonmonotonic for small D. Also the dislocation energy strongly depends on D for small D. The theory is discussed in connection to recent experimental studies of diblock copolymer films deposited on a solid substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.