Abstract

We investigate the existence of edge-magic labellings of countably infinite graphs by abelian groups. We show for that for a large class of abelian groups, including the integers ${\Bbb Z}$, there is such a labelling whenever the graph has an infinite set of disjoint edges. A graph without an infinite set of disjoint edges must be some subgraph of $H + {\cal I}$, where $H$ is some finite graph and ${\cal I}$ is a countable set of isolated vertices. Using power series of rational functions, we show that any edge-magic ${\Bbb Z}$-labelling of $H + {\cal I}$ has almost all vertex labels making up pairs of half-modulus classes. We also classify all possible edge-magic ${\Bbb Z}$-labellings of $H + {\cal I}$ under the assumption that the vertices of the finite graph are labelled consecutively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.