Abstract

The locally twisted cube is a variation of hypercube, which possesses some properties superior to the hypercube. In this paper, we investigate the edge-fault-tolerant hamiltonicity of an n-dimensional locally twisted cube, denoted by LTQn. We show that for any LTQn (n≥3) with at most 2n−5 faulty edges in which each node is incident to at least two fault-free edges, there exists a fault-free Hamiltonian cycle. We also demonstrate that our result is optimal with respect to the number of faulty edges tolerated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.