Abstract

The stability of baroclinic Rossby waves in a zonal shear flow was analyzed by a linear, quasigeostrophic, two-level, adiabatic, and frictionless midlatitude beta-plane model. The ratio of the basic wave scale and the radius of deformation together with two nondimensional parameters which describe the amplitudes of the barotropic and baroclinic components of the basic wave constitute the three parameters of the stability problem. The parameter space is partitioned according to the dominant energy source for instability; the Lorenz and Kim conditions are characterized by significant horizontal and vertical shears of the basic wave, while the Phillips regime has a strong zonal flow. The stability analysis is then applied to the atmosphere, with the primary motivation being to examine the midlatitude planetary scale (zonal wavenumbers 1, 2, 3) transient waves that transport heat. It is found that the most unstable mode consists of a spectrum of waves, with a maximum amplitude at wavenumber 3; the response is thus maximum at a zonal scale intermediate between the basic wave scale and the radius of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.