Abstract
Innovations in drug–target interactions (DTIs) prediction accelerate the progression of drug development. The introduction of deep learning models has a dramatic impact on DTIs prediction, with a distinct influence on saving time and money in drug discovery. This study develops an end-to-end deep collaborative learning model for DTIs prediction, called EDC-DTI, to identify new targets for existing drugs based on multiple drug-target-related information including homogeneous information and heterogeneous information by the way of deep learning. Our end-to-end model is composed of a feature builder and a classifier. Feature builder consists of two collaborative feature construction algorithms that extract the molecular properties and the topology property of networks, and the classifier consists of a feature encoder and a feature decoder which are designed for feature integration and DTIs prediction, respectively. The feature encoder, mainly based on the improved graph attention network, incorporates heterogeneous information into drug features and target features separately. The feature decoder is composed of multiple neural networks for predictions. Compared with six popular baseline models, EDC-DTI achieves highest predictive performance in the case of low computational costs. Robustness tests demonstrate that EDC-DTI is able to maintain strong predictive performance on sparse datasets. As well, we use the model to predict the most likely targets to interact with Simvastatin (DB00641), Nifedipine (DB01115) and Afatinib (DB08916) as examples. Results show that most of the predictions can be confirmed by literature with clear evidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.