Abstract

Self-facilitation through ecosystem engineering (i.e., organism modification of the abiotic environment) and consumer-resource interactions are both major determinants of spatial patchiness in ecosystems. However, interactive effects of these two mechanisms on spatial complexity have not been extensively studied. We investigated the mechanisms underlying a spatial mosaic of low-tide exposed hummocks and waterlogged hollows on an intertidal mudflat in the Wadden Sea dominated by the seagrass Zostera noltii. A combination of field measurements, an experiment and a spatially explicit model indicated that the mosaic resulted from localized sediment accretion by seagrass followed by selective waterfowl grazing. Hollows were bare in winter, but were rapidly colonized by seagrass during the growth season. Colonized hollows were heavily grazed by brent geese and widgeon in autumn, converting these patches to a bare state again and disrupting sediment accretion by seagrass. In contrast, hummocks were covered by seagrass throughout the year and were rarely grazed, most likely because the waterfowl were not able to employ their preferred but water requiring feeding strategy (‘dabbling’) here. Our study exemplifies that interactions between ecosystem engineering by a foundation species (seagrass) and consumption (waterfowl grazing) can increase spatial complexity at the landscape level.

Highlights

  • Spatial heterogeneity is important for the functioning of many different ecosystems, because it can enhance primary productivity, increase the biodiversity and carrying capacity, and stabilize the ecosystem [1,2,3,4]

  • We report on a spatial mosaic of low-tide exposed hummocks and waterlogged hollows that results from an interaction between sediment accretion by seagrass and selective grazing by waterfowl, thereby illustrating that interactions between ecosystem engineering by a foundation species and grazing can cause spatial structuring in ecosystems

  • This finding is important because studies ranging from arctic to tropical environments and from terrestrial to marine ecosystems have demonstrated that spatial heterogeneity is often essential for ecosystem functioning [1,2,3,4]

Read more

Summary

Introduction

Spatial heterogeneity is important for the functioning of many different ecosystems, because it can enhance primary productivity, increase the biodiversity and carrying capacity, and stabilize the ecosystem [1,2,3,4]. We investigated the mechanisms behind a spatial mosaic of low-tide exposed hummocks and waterlogged hollows on an intertidal mudflat dominated by the seagrass Zostera noltii, which is periodically grazed by waterfowl (Fig. 1A). Using this system as a model, we tested whether an interplay between ecosystem engineering by a foundation species and herbivore grazing activity can lead to patchiness similar to those observed for habitat modification or consumer-resource interactions alone. Statistical Analyses Differences in seagrass patch cover between June, August and November, as well as data from the seagrass removal experiment were first tested for normality. Bird observation data were analyzed with a Chi-square test

Field Study Results
Model Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.