Abstract

This study examines cellulosic crop residues for biopower production in the context of (greenhouse gas) GHG emission mitigation. We employ sector modeling to simulate future market potential for biopower production from crop residues. Our findings suggest that in order for crop residues to have any role in electricity generation either the carbon or (carbon dioxide) CO2 equivalent GHG price must rise to about 15 dollars per ton or the price of coal has to increase to about 43 dollars per ton. We find that crop residues with higher heat content have greater opportunities in biopower production than the residues with lower heat content. In addition, our evidence shows that improvements in crop yields do not have much impact on biopower production. However, the energy recovery efficiency does have significant positive impact but only if the CO2 equivalent price rises substantially. Moreover, our analysis indicates the desirability of cofiring biomass as opposed to 100% replacement because this reduces transportation cost and increases the efficiency of heat recovery. In terms of policy implications, imposing carbon emission pricing could be an important step in inducing electric power producers to include biomass feedstocks in their fuel-mix power generation portfolios and achieve GHG emission reductions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.