Abstract

Traditionally, economic data of power supply is often analyzed through the count regression model due to the type of empirical data in the decision-making process. However, in reality, it is difficult to use count data model for data with autoregressive features. The main reason is that the time series features and autoregressive attributes cannot be controlled through the count regression model, which violates the assumptions set by the model. Therefore, there may be errors in the empirical analysis results. This letter firstly describes the characteristic of the count regression model and the problem, and then we refine the multiplicative autoregressive count model for dynamic count data. The model has desirable theoretical properties and is trivial to incorporate into existing models for the count data. In this study, the multiplicative autoregressive counting model for dynamic counting data is improved. The model has ideal theoretical properties and can be easily incorporated into existing economic models of counting data, especially for power supply policy analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.