Abstract

The color patterns of an animal’s pelage, feather, or skin serve a variety of adaptive functions; importantly, one function is concealment through background matching. In spatially and temporally heterogeneous environments, some species exhibit multiple distinct color patterns within a population (i.e. color polymorphism). The environmental drivers of color polymorphism are poorly understood. We used the polymorphic eastern fox squirrel (Sciurus niger ssp.; hereafter, fox squirrel) as a model species to investigate the role of environmental factors on pelage coloration. Building upon previous research that investigated the drivers of melanism, we measured fox squirrel pelage coloration across the visible light spectrum. Agouti-colored squirrels were positively associated with increased proportion of burned area in a fox squirrel dispersal buffer. Light-colored (less melanistic) squirrels were positively associated with increasing proportion of cropland in a fox squirrel dispersal buffer. We posit that agouti pelage is broadly adapted to a range of heterogeneous conditions created by fire. Conversely, croplands, once established, are relatively stable ecosystems which promote a consistently adaptive light-colored pelage morph. We suggest that in an increasingly human-dominated environment, spatially and temporally homogeneous processes, such as prescribed burning, may not sufficiently recreate environmental heterogeneity, which could result in lost pelage diversity.

Highlights

  • One of the most distinct forms of animal diversity is the variety of color patterns animals exhibit

  • We found that variation in fox squirrel pelage coloration was associated with differences in spatial and temporal environmental heterogeneity

  • We found support for our prediction that agouti pelage was positively associated with fire (Figures 3, 5)

Read more

Summary

Introduction

One of the most distinct forms of animal diversity is the variety of color patterns animals exhibit. The color patterns of an animal’s pelage, feather, or skin serve a variety of adaptive functions such as concealment, communication, and thermoregulation (Caro, 2005; Ancillotto and Mori, 2017; Cuthill et al, 2017). Pelage coloration can reduce predation risk, often through concealment, thereby reducing an animal’s likelihood of being identified by a predator (Krupa and Geluso, 2000; Boratyñski et al, 2014). Color polymorphism is often associated with spatial and temporal environmental heterogeneity that promotes multiple strong selective forces on coloration

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.