Abstract
Many animals derive benefits from roosting communally but may also face increased risk of infectious disease transmission. In spite of recent high-profile disease outbreaks in roosting animals of conservation and public health concern, we currently lack general theory for how attributes of roosting animals and their pathogens influence pathogen spread among roosts and overall population impacts on roosting species. Here we develop a model to explore how roost size and host site fidelity influence the time for a pathogen to escape from its initial roost, overall infection prevalence, and host population size, for pathogens with density- or frequency-dependent transmission and varying virulence. We find that pathogens spread rapidly to all roosts when animals are distributed among a small number of large roosts, and that roost size more strongly influences spread rate for density-dependent than frequency-dependent transmitted pathogens. However, roosting animals that exhibit high site fidelity and distribute among a large number of small roosts are buffered from population-level impacts of pathogens of both transmission modes. We discuss our results in the context of anthropogenic change that is altering aspects of roosting behavior relevant to emerging pathogen spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.