Abstract
Natural communities are exposed to multiple environmental stressors, which simultaneously impact the population and trait dynamics of the species embedded within these communities. Given that certain traits, such as body size, are known to rapidly respond to environmental change, and given that they can strongly influence the density of populations, this raises the question of whether the strength of the eco-phenotypic feedback loop depends on the environment, and whether stressful environments would enhance or disrupt this feedback or causal linkage. We use two competing freshwater ciliates-Colpidium striatum and Paramecium aurelia-and expose their populations to a full-factorial design of increasing salinity and temperature conditions as well as interspecific competition. We found that salinity, temperature, and competition significantly affected the density and cell size dynamics of both species. Cell size dynamics strongly influenced density dynamics; however, the strength of this eco-phenotypic feedback loop weakened in stressful conditions and with interspecific competition. Our study highlights the importance of studying eco-phenotypic dynamics in different environments comprising stressful abiotic conditions and species interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.