Abstract

PurposeThe purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and time.Design/methodology/approachThe dyeing process was optimized using the response surface methodology (RSM) approach. pH, dyeing duration and the presence of additives were chosen as variables and the color strength of samples as a response. The color characteristics and fastness attributes of samples dyed in the best condition were evaluated and compared to pre-mordant dyeing outcomes on wool yarns.FindingsThe best conditions for deep dyeing wool with cochineal dye were as follows: pH 2.5, time 110 min and the ratio of aluminum: additives 1:0 at 100 °C. Color strength of dyed wool yarns by one-bath and pre-mordant dyeing methods were approximately the same. Wool yarns can dye to the on-bath dyeing method such that the dyed samples have similar color strength and fastness properties to pre-mordant dyeing.Social implicationsWool dyeing processes that use one-bath dyeing consume less water and produce fewer effluents. As a result, this strategy conserves water and energy for a higher quality of life. The findings of this study, in general, aid environmental protection.Originality/valueA novel one-bath process for dyeing wool with cochineal dye at heavy depths is introduced. RSM was used to optimize the procedure and determine effective parameters on the color strength of dyed wools. Using extracted cochineal dye and aluminum sulfate in a simultaneous dyeing technique, good color fastness qualities on wool fibers were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.