Abstract

echinoid (ed) encodes an immunoglobulin domain-containing cell adhesion molecule that negatively regulates the Egfr signaling pathway during Drosophila photoreceptor development. We show a novel function of Ed, i.e. the restriction of the number of notum bristles that arise from a proneural cluster. Thus, loss-of-function conditions for ed give rise to the development of extra macrochaetae near the extant ones and increase the density of microchaetae. Analysis of ed mosaics indicates that extra sensory organ precursors (SOPs) arise from proneural clusters of achaete-scute expression in a cell-autonomous way. ed embryos also exhibit a neurogenic phenotype. These phenotypes suggest a functional relation between ed and the Notch (N) pathway. Indeed, loss-of-function of ed reduces the expression of the N pathway effector E(spl)m8 in proneural clusters. Moreover, combinations of moderate loss-of-function conditions for ed and for different components of the N pathway show clear synergistic interactions manifested as strong neurogenic bristle phenotypes. We conclude that Ed is not essential for, but it facilitates, N signaling. It is known that the N and Egfr pathways act antagonistically in bristle development. Consistently, we find that Ed also antagonizes the bristle-promoting activity of the Egfr pathway, either by the enhancement of N signalling or, similar to the eye, by a more direct action on the Egfr pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.