Abstract

The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequency of the ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from two classes: arrhythmia and supraventricular. Baseline wander is removed by a moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the ALO. The performance of the ALO is investigated. The ALO-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent ALO-based system successfully denoised the ECG signals more effectively than the conventional method. The accuracy percentage increased by 2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.