Abstract
Rolling Contact Fatigue (RCF) is very high-cycle fatigue process, leading to the formation of so-called butterfly cracks around non-metallic inclusions. The purpose of this study is to describe the crack initiation and microstructural changes around butterfly cracks in the hardened and tempered bearing steel with artificially introduced Al 2O 3 inclusions. This paper presents results from investigations using state-of-art electron imaging techniques such as Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB). EBSD measurements showed high level of local grain misorientation at Al 2O 3/steel matrix interface which suggests possible locations for microcracks initiation. The TEM samples, containing the cracks, were selected from specific locations using precise FIB preparation process, allowing the TEM analyses of the large microstructural changes between the butterfly crack (formation of ultra fine nano-crystalline ferrite) and the steel matrix (tempered martensite). It was found that the butterfly crack growth and microstructural changes (formation of nano-crystalline ferrite) are simultaneous processes as a result of low-temperature recrystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.