Abstract
Linear retention indices are commonly used to identify compounds in programmed-temperature gas chromatography (GC), but they are unreliable unless the original experimental conditions used to measure them are stringently reproduced. However, differences in many experimental conditions may be properly taken into account by calculating programmed-temperature retention times of compounds from their measured isothermal retention vs. temperature relationships. We call this approach “retention projection”. Until now, retention projection has been impractical because it required very precise, meticulous measurement of the temperature vs. time and hold-up time vs. temperature profiles actually produced by a specific GC instrument to be accurate. Here we present a new, easy-to-use methodology to precisely measure those profiles: we spike a sample with 25 n-alkanes and use their measured, programmed-temperature retention times to precisely back-calculate what the instrument profiles must have been. Then, when we use those back-calculated profiles to project retention times of 63 chemically diverse compounds, we found that the projections are extremely accurate (e.g. to ±0.9s in a 40min ramp). They remained accurate with different temperature programs, GC instruments, inlet pressures, flow rates, and with columns taken from different batches of stationary phase while the accuracy of retention indices became worse the more the experimental conditions were changed from the original ones used to measure them. We also developed new, open-source software (http://www.retentionprediction.org/gc) to demonstrate the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.